Templating Gold Surfaces with Function: A Self-Assembled Dendritic Monolayer Methodology Based on Monodisperse Polyester Scaffolds
详细信息    查看全文
文摘
The antibiotic resistance developed among several pathogenic bacterial strains has spurred interest in understanding bacterial adhesion down to a molecular level. Consequently, analytical methods that rely on bioactive and multivalent sensor surfaces are sought to detect and suppress infections. To deliver functional sensor surfaces with an optimized degree of molecular packaging, we explore a library of compact and monodisperse dendritic scaffolds based on the nontoxic 2,2-bis(methylol)propionic acid (bis-MPA). A self-assembled dendritic monolayer (SADM) methodology to gold surfaces capitalizes on the design of aqueous soluble dendritic structures that bear sulfur-containing core functionalities. The nature of sulfur (either disulfide or thiol), the size of the dendritic framework (generation 1鈥?), the distance between the sulfur and the dendritic wedge (4 or 14 脜), and the type of functional end group (hydroxyl or mannose) were key structural elements that were identified to affect the packaging densities assembled on the surfaces. Both surface plasmon resonance (SPR) and resonance-enhanced surface impedance (RESI) experiments revealed rapid formation of homogenously covered SADMs on gold surfaces. The array of dendritic structures enabled the fabrication of functional gold surfaces displaying molecular covering densities of 0.33鈥?.2 molecules路nm鈥? and functional availability of 0.95鈥?.5 groups路nm鈥?. The cell scavenging ability of these sensor surfaces for Escherichia coli MS7fim+ bacteria revealed 2.5 times enhanced recognition for G3-mannosylated surfaces when compared to G3-hydroxylated SADM surfaces. This promising methodology delivers functional gold sensor surfaces and represents a facile route for probing surface interactions between multivalently presented motifs and cells in a controlled surface setting.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700