Uncorrelated Dynamical Processes in Tetranuclear Carboxylate Clusters Studied by Variable-Temperature 1H NMR Spectroscopy.
详细信息    查看全文
文摘
Tetranuclear carboxylate clusters with the general structural formula [M4(L)2(O2CR)4] (M = Cd, Zn; LH2 = 2,6-bis(1-(2-hydroxyphenyl)-iminoethyl)pyridine; R = CH3, C6H5) were studied by variable-temperature (VT) 1H NMR spectroscopy. The dynamics of these clusters in solution can be described by two uncorrelated dynamical processes. The first dynamical process is the interconversion, both inter- as well as intramolecular, between syn鈥?i>syn bridging and chelating carboxylate ligands. It is shown that this carboxylate interconversion mechanism is predominantly intramolecular for [Cd4(L)2(O2CCH3)4] (1a), whereas for [Zn4(L)2(O2CCH3)4] (2a) it is predominantly intermolecular. Two models for the second dynamic process, which involves the diiminepyridine ligand, are described. The first model comprises a nondissociative rotation around an internal axis, which changes the chirality of the cluster. The second model is based on the dissociation of the tetranuclear cluster into two dimeric species, which recombine again. This last model is supported by scrambling experiments between [Zn4(L)2(O2CCH3)4] (2a) and [Zn4(L3)2(O2CCH3)4] (5) (L3H2 = 2,6-bis(1-(2-hydroxyphenyl)-iminoethyl)4-chloropyridine).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700