Dynamic Predictive Modeling Under Measured and Unmeasured Continuous-Time Stochastic Input Behavior
详细信息    查看全文
文摘
Many input variables of chemical processes have a continuous-time stochastic (CTS) behavior. The nature of these variables is a persistent, time-correlated variation that manifests as process variation as the variables deviate in time from their nominal levels. This work introduces methodologies in process identification for improving the modeling of process outputs by exploiting CTS input modeling under cases where the input is measured and unmeasured. In the measured input case, the output variable is measured offline, infrequently, and at a varying sampling rate. A method is proposed for estimating CTS parameters from the measured input by exploiting statistical properties of its CTS model. The proposed approach is evaluated based on both output accuracy and predictive ability several steps ahead of the current input measurement. Two parameter estimation techniques are proposed when the input is unmeasured. The first is a derivative-free approach that uses sample moments and analytical expressions for population moments to estimate the CTS model parameters. The second exploits the CTS input model and uses the analytical solution of the dynamic model to estimate these parameters. The predictive ability of the latter approach is evaluated in the same way as the measured input case. All of the data in this work were artificially generated under the probabilistic CTS model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700