Variable-Temperature 17O NMR Studies Allow Quantitative Evaluation of Molecular Dynamics in Organic Solids
详细信息    查看全文
文摘
We report a comprehensive variable-temperature solid-state 17O NMR study of three 17O-labeled crystalline sulfonic acids: 2-aminoethane-1-sulfonic acid (taurine, T), 3-aminopropane-1-sulfonic acid (homotaurine, HT), and 4-aminobutane-1-sulfonic acid (ABSA). In the solid state, all three compounds exist as zwitterionic structures, NH3+鈥揜鈥揝O3鈥?/sup>, in which the SO3鈥?/sup> group is involved in various degrees of O路路路H鈥揘 hydrogen bonding. High-quality 17O NMR spectra have been obtained for all three compounds under both static and magic angle spinning (MAS) conditions at 21.1 T, allowing the complete set of 17O NMR tensor parameters to be measured. Assignment of the observed 17O NMR parameters to the correct oxygen sites in the crystal lattice was achieved with the aid of DFT calculations. By modeling the temperature dependence of 17O NMR powder line shapes, we have not only confirmed that the SO3鈥?/sup> groups in these compounds undergo a 3-fold rotational jump mechanism but also extracted the corresponding jump rates (102鈥?05 s鈥?) and the associated activation energies (Ea) for this process (Ea = 48 卤 7, 42 卤 3, and 45 卤 1 kJ mol鈥? for T, HT, and ABSA, respectively). This is the first time that SO3鈥?/sup> rotational dynamics have been directly probed by solid-state 17O NMR. Using the experimental activation energies for SO3鈥?/sup> rotation, we were able to evaluate quantitatively the total hydrogen bond energy that each SO3鈥?/sup> group is involved in within the crystal lattice. The activation energies also correlate with calculated rotational energy barriers. This work provides a clear illustration of the utility of solid-state 17O NMR in quantifying dynamic processes occurring in organic solids. Similar studies applied to selectively 17O-labeled biomolecules would appear to be very feasible.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700