RuO2 Monolayer: A Promising Bifunctional Catalytic Material for Nonaqueous Lithium–Oxygen Batteries
详细信息    查看全文
  • 作者:Le Shi ; Ao Xu ; Tianshou Zhao
  • 刊名:Journal of Physical Chemistry C
  • 出版年:2016
  • 出版时间:March 31, 2016
  • 年:2016
  • 卷:120
  • 期:12
  • 页码:6356-6362
  • 全文大小:431K
  • ISSN:1932-7455
文摘
Rutile RuO2 has been widely regarded as an excellent catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in nonaqueous lithium–oxygen batteries and achieved superior performance, but the catalytic activity of RuO2’s polymorph, RuO2 monolayer, has been less studied. In this work, we study the catalytic activities of both rutile RuO2 and RuO2 monolayer for ORR and OER in the battery using density functional theory method. Computational results show that the RuO2 monolayer exhibits a higher catalytic activity than the rutile RuO2 does. More interestingly, it is found that during discharge a similar lattice structure between RuO2 monolayer and Li2O2 {0001} surface can induce the formation of crystallized Li2O2 with the conductive {0001} surface exposed, whereas during charge the RuO2 monolayer can attract the remaining Li2O2 to its surface spontaneously, thus maintaining the solid–solid reaction interface. Our results suggest that the RuO2 monolayer is a promising catalytic material for nonaqueous lithium–oxygen batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700