Chemical Vapor Deposition Synthesized Atomically Thin Molybdenum Disulfide with Optoelectronic-Grade Crystalline Quality
详细信息    查看全文
文摘
The ability to synthesize high-quality samples over large areas and at low cost is one of the biggest challenges during the developmental stage of any novel material. While chemical vapor deposition (CVD) methods provide a promising low-cost route for CMOS compatible, large-scale growth of materials, it often falls short of the high-quality demands in nanoelectronics and optoelectronics. We present large-scale CVD synthesis of single- and few-layered MoS2 using direct vapor-phase sulfurization of MoO2, which enables us to obtain extremely high-quality single-crystal monolayer MoS2 samples with field-effect mobility exceeding 30 cm2/(V s) in monolayers. These samples can be readily synthesized on a variety of substrates, and demonstrate a high-degree of optoelectronic uniformity in Raman and photoluminescence mapping over entire crystals with areas exceeding hundreds of square micrometers. Because of their high crystalline quality, Raman spectroscopy on these samples reveal a range of multiphonon processes through peaks with equal or better clarity compared to past reports on mechanically exfoliated samples. This enables us to investigate the layer thickness and substrate dependence of the extremely weak phonon processes at 285 and 487 cm鈥? in 2D-MoS2. The ultrahigh, optoelectronic-grade crystalline quality of these samples could be further established through photocurrent spectroscopy, which clearly reveal excitonic states at room temperature, a feat that has been previously demonstrated only on samples which were fabricated by micro-mechanical exfoliation and then artificially suspended across trenches. Our method reflects a big step in the development of atomically thin, 2D-MoS2 for scalable, high-quality optoelectronics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700