Highly Stable Operation of Metal Oxide Nanowire Transistors in Ambient Humidity, Water, Blood, and Oxygen
详细信息    查看全文
文摘
The capability for robust operation of nanoscale transistors under harsh environments is equally important as their operating parameters such as high on-currents, high mobility, and high sensing selectivity. For electronic/biomedical applications, in particular, transistor operation must be stable under diverse conditions including ambient humidity, water, blood, and oxygen. Here we demonstrate the use of a self-assembled monolayer of octadecylphosphonic acid (OD-PA) to passivate a functionalized nanowire transistor, allowing the device to operate consistently in such environments. In contrast, without passivation, the characteristics (especially the threshold voltage) of identical nanowire transistors were dramatically altered under these conditions. Furthermore, the OD-PA-passivated transistor shows no signs of long-term stability deterioration and maintains equally high sensing selectivity to light under the harsh environments because of OD-PA鈥檚 optical transparency. These results demonstrate the suitability of OD-PA passivation methods for fabricating commercial nanoelectronics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700