Design and Implementation of Two-Dimensional Polymer Adsorption Models: Evaluating the Stability of Candida antarctica Lipase B/Solid-Support Interfaces by QCM-D
详细信息    查看全文
文摘
A two-dimensional model of a solid-supported enzyme catalyst bead is fabricated on a quartz crystal microbalance with dissipation monitoring (QCM-D) sensor to measure in situ interfacial stability and mechanical properties of Candida antarctica Lipase B (CAL B) under varied conditions relating to ring-opening polymerization. The model was fabricated using a dual photochemical approach, where poly(methyl methacrylate) (PMMA) thin films were cross-linked by a photoactive benzophenone monolayer and blended cross-linking agent. This process produces two-dimensional, homogeneous, rigid PMMA layers, which mimic commercial acrylic resins in a QCM-D experiment. Adsorption of CAL B to PMMA in QCM-D under varied buffer ionic strengths produces a viscoelastic enzyme surface that becomes more rigid as ionic strength increases. The rigid CAL B/PMMA interface demonstrates up to 20% desorption of enzyme with increasing trace water content. Increased polycaprolactone (PCL) binding at the enzyme surface was also observed, indicating greater PCL affinity for a more hydrated enzyme surface. The enzyme layer destabilized with increasing temperature, yielding near complete reversible catalyst desorption in the model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700