Photophysical Properties of Doped Carbon Dots (N, P, and B) and Their Influence on Electron/Hole Transfer in Carbon Dots鈥揘ickel (II) Phthalocyanine Conjugates
详细信息    查看全文
文摘
Doping in carbon nanomaterial with various hetero atoms draws attention due to their tunable properties. Herein, we have synthesized nitrogen containing carbon dots [C-dots (N)], phosphorus co-doped nitrogen containing carbon dots [C-dots (N, P)], and boron co-doped nitrogen containing carbon dots [C-dots (N, B)]; and detailed elemental analysis has been unveiled by X-ray photoelectron spectroscopy (XPS) measurements. Our emphasis is given to understand the effect of doping on the photophysical behavior of carbon dots by using steady-state and time-resolved spectroscopy. Nitrogen containing carbon dots have quantum yield (QY) of 64.0% with an average decay time of 12.8 ns. Photophysical properties (radiative decay rate and average decay time) are found to be increased for phosphorus co-doping carbon dots due to extra electron incorporation for n-type doping (phosphorus dopant) to carbon dots which favors the radiative relaxation pathways. On the contrary, boron (p-type dopant) co-doping with nitrogen containing carbon dots favors the nonradiative electron鈥揾ole recombination pathways due to incorporation of excess hole; as a result QY, radiative rate, and average decay time are decreased. To understand the effect of doping on charge transfer phenomena, we have attached nickel (II) phthalocyanine on the surface of C-dots. It is seen that phosphorus co-doping carbon dots accelerates the electron transfer process from carbon dots to phthalocyanine. In contrast, after boron co-doping in carbon dots, the electron transfer process slows down and a simultaneous hole transfer process occurs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700