On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles
详细信息    查看全文
文摘
Luminescent quantum dots (QDs) were proven to be very effective fluorescence resonance energy transfer donors with an array of organicdye acceptors, and several fluorescence resonance energy transfer based biosensing assemblies utilizing QDs have been demonstrated in thepast few years. Conversely, gold nanoparticles (Au-NPs) are known for their capacity to induce strong fluorescence quenching of conventionaldye donors. Using a rigid variable-length polypeptide as a bifunctional biological linker, we monitor the photoluminescence quenching ofCdSe-ZnS QDs by Au-NP acceptors arrayed around the QD surface, where the center-to-center separation distance was varied over a broadrange of values (~50-200 Å). We measure the Au-NP-induced quenching rates for such QD conjugates using steady-state and time-resolvedfluorescence measurements and examine the results within the context of theoretical treatments based on the Förster dipole-dipole resonanceenergy transfer, dipole-metal particle energy transfer, and nanosurface energy transfer. Our results indicate that nonradiative quenching ofthe QD emission by proximal Au-NPs is due to long-distance dipole-metal interactions that extend significantly beyond the classical Försterrange, in agreement with previous studies using organic dye-Au-NP donor-acceptor pairs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700