Selective Fragmentation of Radiation-Sensitive Novel Polymeric Resist Materials by Inner-Shell Irradiation
详细信息    查看全文
文摘
Two key concepts in extreme ultraviolet lithography (EUVL) are important for it to be a candidate for the mass production of future integrated circuits: the polymer formulation and the photofragmentation process. In this work, both concepts were carefully studied. The design and synthesis of radiation鈥搒ensitive organic polymeric materials based on the inclusion of a radiation-sensitive tetrahydrothiophenium functional group are outlined. A 1-(4-methacryloyoxy)naphthalene-1-yl)tetrahydro-1H-thiophenium trifluoromethanesulfonate (MANTMS) monomer containing the tetrahydrothiophenium group undergoes homo- and copolymerizations using free-radical polymerization with a 2,2鈥?azobis(isobutyronitrile) initiator. The surface photodegradation and oxidation of these novel polymeric materials were investigated using highly monochromatized soft X-rays from synchrotron radiation at the carbon K-edge excitation region. An efficient functionalization was observed when the excitation energy was tuned to C 1s 鈫?蟺*C鈺怌. A high rate of defluorination and a loss of sulfonated groups as a result of an increase in the irradiation time for the MANTMS homopolymer thin films were mainly observed under the 蟺*C鈺怌 excitation of the naphthyl functional groups. On the contrary, excitation similar to C 1s 鈫?蟺*C鈺怬 or C 1s 鈫?蟽*C鈥揊 did not produce important degradation, showing a highly selective process of bond breaking. Additionally, the presence of methyl methacrylate copolymer in the original MANTMS yielded a much higher degree of stability against inner-shell radiation damage. Our results highlight the importance of choosing the right polymer formulation and excitation energy to produce a sensitive material for EUVL without using the concept of chemical amplification.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700