Electrochemical Spectroscopic Methods for the Fine Band Gap Electronic Structure Mapping in Organic Semiconductors
详细信息    查看全文
文摘
Functionality of organic photonic devices is markedly influenced by the electronic band structure of the used materials. An easy and quick determination of the density of states function (DOS) in the whole energy range from HOMO to LUMO, including the presence of defect states in the band gap, is a prerequisite to a successful design of photonic devices. In this study we present the fine band gap electronic structure mapping in P3HT with two electrochemical spectroscopic methods: the energy-resolved electrochemical impedance spectroscopy (ER-EIS) and the kinetic sensitive voltcoulometry (VCM). We showed that the P3HT exposition to air results in the change of light-induced polaron states in the band gap. The electrochemically measured data are compared with those from the literature, obtained with combined optical spectroscopic methods, electrical methods, or first-principles calculations. The ER-EIS method has been shown as capable of providing valuable information on the DOS in the whole energy range from HOMO to LUMO, and the VCM method opens the possibility to study separately the charge transfer (redox) processes with different kinetics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700