Dynamic Strength of the Silicon-Carbon Bond Observed over Three Decades of Force-Loading Rates
详细信息    查看全文
文摘
The mechanical strength of individual Si-C bonds was determined as a function of the appliedforce-loading rate by dynamic single-molecule force spectroscopy, using an atomic force microscope. Theapplied force-loading rates ranged from 0.5 to 267 nN/s, spanning 3 orders of magnitude. As predicted byArrhenius kinetics models, a logarithmic increase of the bond rupture force with increasing force-loadingrate was observed, with average rupture forces ranging from 1.1 nN for 0.5 nN/s to 1.8 nN for 267 nN/s.Three different theoretical models, all based on Arrhenius kinetics and analytic forms of the binding potential,were used to analyze the experimental data and to extract the parameters fmax and De of the binding potential,together with the Arrhenius A-factor. All three models well reproduced the experimental data, includingstatistical scattering; nevertheless, the three free parameters allow so much flexibility that they cannot beextracted unambiguously from the experimental data. Successful fits with a Morse potential were achievedwith fmax = 2.0-4.8 nN and De = 76-87 kJ/mol, with the Arrhenius A-factor covering 2.45 × 10-10-3 × 10-5 s-1, respectively. The Morse potential parameters and A-factor taken from gas-phase densityfunctional calculations, on the other hand, did not reproduce the experimental forces and force-loadingrate dependence.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700