Alkyl-methylimidazolium Tricyanomethanide Ionic Liquids under Extreme Confinement onto Nanoporous Ceramic Membranes
详细信息    查看全文
文摘
A method to predict the gas permeability of supported ionic liquid membranes (SILMs) was established, using as input the pore structure characteristics of asymmetric ceramic membrane supports and the physicochemical properties of the bulk ionic liquid (IL) phase. The method was applied to investigate the effect of IL nanoconfinement on the CO2 and N2 permeability/selectivity properties of novel SILMs developed on nanofiltration (NF) membranes employing for the first time the 1-ethyl-3-methylimidazolium and the 1-butyl-3-methylimidazolium tricyanomethanide ILs as pore modifiers. The selected ILs exhibit low viscosity, which allows for faster gas solvation rates and ease of synthesis/purification that makes them attractive for large-scale production. In parallel, the use of ceramic supports instead of polymeric ones presents the advantage of operation at elevated temperatures and pressures and offers the possibility to study the 鈥渞eal鈥?permeability of the confined IL phase, avoiding additional contributions from the gas diffusion through the surrounding solid matrix. The developed SILMs exhibited enhanced CO2 permeability together with high CO2/N2 separation capacity, though with distinct variations depending on the alkyl chain length of the 1-alkyl-3-methylimidazolium cation. Application of the developed methodology allowed discriminating the contribution of the NF pore structural characteristics on the SILM performance and unveiled the subtle interplay of diverse IL confinement effects on the gas permeability stemming from the specific layering of ion pairs on the nanoporous surface and the phase transition of the IL at room temperature, dictated by small variations of the IL cation size.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700