Intramolecular Distances and Dynamics from the Combined Photon Statistics of Single-Molecule FRET and Photoinduced Electron Transfer
详细信息    查看全文
文摘
Single-molecule F枚rster resonance energy transfer (FRET) and photoinduced electron transfer (PET) have developed into versatile and complementary methods for probing distances and dynamics in biomolecules. Here we show that the two methods can be combined in one molecule to obtain both accurate distance information and the kinetics of intramolecular contact formation. In a first step, we show that the fluorescent dyes Alexa 488 and Alexa 594, which are frequently used as a donor and acceptor for single-molecule FRET, are also suitable as PET probes with tryptophan as a fluorescence quencher. We then performed combined FRET/PET experiments with FRET donor- and acceptor-labeled polyproline peptides. The placement of a tryptophan residue into the polyglycylserine tail incorporated in the peptides allowed us to measure both FRET efficiencies and the nanosecond dynamics of contact formation between one of the fluorescent dyes and the quencher. Variation of the linker length between the polyproline and the Alexa dyes and in the position of the tryptophan residue demonstrates the sensitivity of this approach. Modeling of the combined photon statistics underlying the combined FRET and PET process enables the accurate analysis of both the resulting transfer efficiency histograms and the nanosecond fluorescence correlation functions. This approach opens up new possibilities for investigating single biomolecules with high spatial and temporal resolution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700