Ultrafast Exciton Dynamics in Colloidal CdSe/CdS Octapod Shaped Nanocrystals
详细信息    查看全文
文摘
We studied the carrier dynamics in colloidal octapod-shaped cadmium selenide/cadmium sulfide (CdSe/CdS) nanocrystals in the solution phase via pump鈥損robe optical techniques with subpicosecond resolution. We could resolve bleaching from two different types of electronic states having distinct dynamics and assigned them to states delocalized in the pods and mildly localized in the core based on the good agreement of energies found with effective mass modeling. Contrary to other CdSe/CdS core/shell nanocrystals, such a mild localization has geometrical origins as the best agreement was found for negligible conduction band offset. Moreover, even though the large surface of the CdSe/CdS heterointerface results into a weak signature of electron trapping in the bleaching spectrum, we found that a relevant fraction of electrons do remain delocalized in pod states for long times and are thus available for diffusion in photovoltaic applications where the highly branched geometry is expected to advantageously yield to effective percolation in dense assemblies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700