Long-Range Ordering of Ionic Liquid Fluid Films
详细信息    查看全文
  • 作者:Radhika S. Anaredy ; Scott K. Shaw
  • 刊名:Langmuir
  • 出版年:2016
  • 出版时间:May 24, 2016
  • 年:2016
  • 卷:32
  • 期:20
  • 页码:5147-5154
  • 全文大小:383K
  • 年卷期:0
  • ISSN:1520-5827
文摘
We report the transformation of ionic liquid films from isotropic bulk to a fluid-ordered state over micrometer length scales. Data from infrared and nonlinear spectroscopy measurements show clear transitions that, for varying ionic liquids, occur over time frames of 10 min to 2 h. These maturation times depend linearly on the chosen ionic liquids’ bulk viscosities. Interestingly, the ionic liquids do not form solids upon ordering but do exhibit strong preferential alignments of molecules that persist throughout the fluid films’ thicknesses. Our measurements characterize this ordering process and show that it is largely insensitive to substrate surface chemistry or small amounts of absorbed water. Additional experiments show the transition is observed across several of the most common ionic liquid cations and that the process is completely reversible. The driving force for this organization is attributed to electrostatic and steric forces combined with a slow shearing of the viscous ionic liquid. These interactions work together to slowly bring the molecules within the film to a preferred, global orientation. The physical length and time scales of this transformation are unexpected and intriguing and invite additional studies to develop an understanding and control of ionic liquid materials’ behavior, particularly near surfaces, to benefit their uses in lubrication, capacitive energy storage, and heterogeneous catalysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700