Bimetallic Complexes Supported by a Redox-Active Ligand with Fused Pincer-Type Coordination Sites
详细信息    查看全文
文摘
The remarkable chemistry of mononuclear complexes featuring tridentate, meridionally chelating 鈥減incer鈥?ligands has stimulated the development of ligand frameworks containing multiple pincer sites. Here, the coordination chemistry of a novel pentadentate ligand (LN3O2) that provides two closely spaced NNO pincer-type compartments fused together at a central diarylamido unit is described. The trianionic LN3O2 chelate supports homobimetallic structures in which each M(II) ion (M = Co, Cu, Zn) is bound in a meridional fashion by the bridging diarylamido N atom and O,N-donors of the salicyaldimine arms. The metal centers are also coordinated by a mono- or bidentate auxiliary ligand (Laux), resulting in complexes with the general form [M2(LN3O2)(Laux)2]+ (where Laux = 1-methyl-benzimidazole (1MeBI), 2,2鈥?bipyridine (bpy), 4,4鈥?dibromo-2,2鈥?bipyridine (bpyBr2), or (S)-2-(4-isopropyl-4,5-dihydrooxazolyl)pyridine (S-iPrOxPy)). The fused nature of the NNO pincer sites results in short metal鈥搈etal distances ranging from 2.70 脜 for [Co2(LN3O2) (bpy)2]+ to 3.28 脜 for [Zn2(LN3O2) (bpy)2]+, as revealed by X-ray crystallography. The complexes possess C2 symmetry due to the twisting of the aryl rings of the 渭-NAr2 core; spectroscopic studies indicate that chiral Laux ligands, such as S-iPrOxPy, are capable of controlling the helical sense of the LN3O2 scaffold. Since the four- or five-coordinate M(II) centers are linked solely by the amido moiety, each features an open coordination site in the intermetallic region, allowing for the possibility of metal鈥搈etal cooperativity in small-molecule activation. Indeed, the dicobalt(II) complex [Co2(LN3O2) (bpyBr2)2]+ reacts with O2 to yield a dicobalt(III) species with a 渭-1,2-peroxo ligand. The bpy-containing complexes exhibit rich electrochemical properties due to multiple metal- and ligand-based redox events across a wide (3.0 V) potential window. Using electron paramagnetic resonance (EPR) spectroscopy and density functional theory (DFT), it was determined that one-electron oxidation of [Co2(LN3O2) (bpy)2]+ results in formation of a S = 1/2 species with a LN3O2-based radical coupled to low-spin Co(II) centers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700