Memory Effects in Compound-Specific D/H Analysis by Gas Chromatography/Pyrolysis/Isotope-Ratio Mass Spectrometry
详细信息    查看全文
  • 作者:Ying Wang ; Alex L. Sessions
  • 刊名:Analytical Chemistry
  • 出版年:2008
  • 出版时间:December 1, 2008
  • 年:2008
  • 卷:80
  • 期:23
  • 页码:9162-9170
  • 全文大小:207K
  • 年卷期:v.80,no.23(December 1, 2008)
  • ISSN:1520-6882
文摘
Compound-specific analyses of lipid D/H ratios often encounter ranges of 300‰ or more, and experiments using D-enriched water to study fractionations often extend the range up to 1000‰. Here we show that for such large dynamic ranges in D/H ratio, isotopic “memory” between adjacent peaks can be significant. Memory effects have not been previously reported for GC/P/IRMS systems but can have a significant impact on many measurements, even those exploring only natural-abundance variations in D/H. To quantitatively evaluate these effects, we synthesized two series of organic standards with δD values varying from −230 to +800‰. We then analyzed chromatograms in which analyte δD values, retention times, or relative abundances were independently varied. For two sequential GC peaks, isotopic memory is measured to be typically 2−4% of the difference in δD values between the two. Roughly half of this effect can be attributed to unknown processes within the GC itself, and the other half to surface adsorption processes in the pyrolytic conversion of analytes to H2. Isotopic memory increases with decreasing time separation between peaks, with decreasing analyte abundance, and with increasing age of pyrolysis reactors. A simple numerical model that simulates dynamic adsorption of H2 on pyrolytic carbon can reproduce many aspects of the experimental data, suggesting that this is likely to be an important mechanism in isotopic memory. Several steps to mitigate memory effects in routine analyses are suggested.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700