Competing Interactions in Surface Reticulation with a Prochiral Dicarbonitrile Linker
详细信息    查看全文
文摘
The organic and metal-directed assembly of a prochiral carbonitrile (CN) oligophenyl molecule on a smooth noble metal substrate was investigated by combined scanning tunneling microscopy and computational modeling. The molecule is functionalized with two CN groups in meta and para positions of the terminating phenyl rings of the p-terphenyl backbone. Upon deposition on a Ag(111) surface, we observe two different organic supramolecular networks, one of them reflecting a chiroselective assembly. After coevaporating small amounts of Co, a hybrid network comprising both CN鈥損henyl and metal coordination bond motifs could be observed. Intriguingly, the CN group in the para position is favored for the metal coordination, whereas the meta group remains in a CN鈥損henyl motif. Computational modeling suggest that the high stability of the meta CN鈥損henyl motif is causing this selective interaction. An increase of the metal adatom ratio eventually induces divergent assembly of a room-temperature stable 2D random metal鈥搊rganic network.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700