Plasmonic Enhancement of Photoactivity by Gold Nanoparticles Embedded in Hematite Films
详细信息    查看全文
文摘
Semiconducting n-type nanostructured hematite (伪-Fe2O3) is a promising photocatalyst for solar water splitting because of its favorable band gap of 2.2 eV, low cost, and abundance in nature. However, its photoactivity is limited by the poor absorptivity and short hole diffusion length. Surface plasmon resonance (SPR) of metallic (Au, Ag, and Cu) nanostructures is known to concentrate and scatter incident light over a broad wavelength range and holds the promise of enhancing the light absorption cross section of a semiconducting material around the plasmonic structures. Herein we report enhanced photoelectrochemical (PEC) performance of a smooth chemical vapor deposited hematite film embedded with Au nanoparticles (NPs). About 3 times higher light absorption and photocurrent enhancement are obtained from thin hematite films containing Au NPs than with pristine hematite films. The plasmonic enhancement increases with the amount of Au NPs for the same thickness of hematite. Thickness-dependent study of photoactivity indicates a higher enhancement in hematite thin films compared to thicker films due to reduced charge transport distance and optimal local field enhancement effect. The improved embedded configuration also has the advantage of consistent performance and protection of plasmonic nanostructures from electrochemical corrosion, resulting in long cycles of operation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700