Patterned Organosilane Monolayers as Lyophobic−Lyophilic Guiding Templates in Surface Self-Assembly: Monolayer Self-Assembly versus Wetting-Driven Self-Assembly
详细信息    查看全文
文摘
Monolayer self-assembly (MSA) was discovered owing to the spectacular liquid repellency (lyophobicity) characteristic of typical self-assembling monolayers of long tail amphiphiles, which facilitates a straightforward visualization of the MSA process without the need of any sophisticated analytical equipment. It is this remarkable property that allows precise control of the self-assembly of discrete, well-defined monolayers, and it was the alternation of lyophobicity and lyophilicity (liquid affinity) in a system of monolayer-forming bifunctional organosilanes that allowed the extension of the principle of MSA to the layer-by-layer self-assembly of planed multilayers. On this basis, the possibility of generating at will patterned monolayer surfaces with lyophobic and lyophilic regions paves the way to the engineering of molecular templates for site-defined deposition of materials on a surface via either precise MSA or wetting-driven self-assembly (WDSA), namely, the selective retention of a liquid repelled by the lyophobic regions of the pattern on its lyophilic sites. Highly ordered organosilane monolayer and thicker layer-by-layer assembled structures are shown to be ideally suited for this purpose. Examples are given of novel WDSA and MSA processes, such as guided deposition by WDSA on lyophobic−lyophilic monolayer and bilayer template patterns at elevated temperatures, from melts and solutions that solidify upon cooling to the ambient temperature, and the possible extension of constructive nanolithography to thicker layer-by-layer assembled films, which paves the way to three-dimensional (3D) template patterns made of readily available monofunctional n-alkyl silanes only. It is further shown how WDSA may contribute to MSA on nanoscale template features as well as how combined MSA and WDSA modes of surface assembly may lead to composite surface architectures exhibiting rather surprising new properties. Finally, a critical evaluation is offered of the scope, advantages, and limitations of MSA and WDSA in the bottom-up fabrication of surface structures on variable length scales from nano to macro.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700