Genetically Engineered Phage-Templated MnO2 Nanowires: Synthesis and Their Application in Electrochemical Glucose Biosensor Operated at Neutral pH Condition
详细信息    查看全文
  • 作者:Lei Han ; Changxu Shao ; Bo Liang ; Aihua Liu
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2016
  • 出版时间:June 8, 2016
  • 年:2016
  • 卷:8
  • 期:22
  • 页码:13768-13776
  • 全文大小:627K
  • 年卷期:0
  • ISSN:1944-8252
文摘
To conveniently obtain one-dimensional MnO2 nanowires (NWs) with controlled structure and unique properties for electron transfer, the genetically engineered M13 phages were used as templates for precise nucleation and growth of MnO2 crystals in filamentous phage scaffolds, via the spontaneous oxidation of Mn2+ in alkaline solution. It was found that the morphology of NWs could be tailored by the surface charge of M13 mutants. MnO2 crystals were uniformly distributed on the surface of negatively charged tetraglutamate-fused phage (M13-E4), significantly different from irregular MnO2 agglomeration on the weakly negatively charged wild-type phage and positively charged tetraarginine-fused phage. The as-synthesized M13-E4@MnO2 NWs could catalyze the electro-oxidation of H2O2 at neutral pH. To demonstrate the superiority of the electrocatalytic activity in the solution containing plenty of chloride ions at neutral pH, both glucose oxidase and as-prepared MnO2 NWs were used for fabricating the glucose biosensor. The proposed biosensor showed a wide linear range (5 μM to 2 mM glucose), a low limit of detection of 1.8 μM glucose (S/N = 3), good interassay and intra-assay reproducibility and satisfactory storage stability. Due to the superiorities of synthesis and electrochemical performance, the as-prepared MnO2 NWs are promising for applications in electrocatalysis, electrochemical sensor, and supercapacitor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700