Graphene Enhanced Electron Transfer at Aptamer Modified Electrode and Its Application in Biosensing
详细信息    查看全文
文摘
Graphene (GN), a two-dimensional and one-atom thick carbon sheet, is showing exciting applications because of its unique morphology and properties. In this work, a new electrochemical biosensing platform by taking advantage of the ultrahigh electron transfer ability of GN and its unique GN/ssDNA interaction was reported. Adenosine triphosphate binding aptamer (ABA) immobilized on Au electrode could strongly adsorb GN due to the strong 蟺鈥撓€ interaction and resulted in a large decrease of the charge transfer resistance (Rct) of the electrode. However, the binding reaction between ABA and its target adenosine triphosphate (ATP) inhibited the adsorption of GN, and Rct could not be decreased. On the basis of this, we developed a new GN-based biosensing platform for the detection of small molecule ATP. The experimental results confirmed that the electrochemical aptasensor we developed possessed a good sensitivity and high selectivity for ATP. The detection range for ATP was from 15 脳 10鈥? to 4 脳 10鈥? M. The method here was label-free and sensitive and did not require sophisticated fabrication. Furthermore, we can generalize this strategy to detect Hg2+ using a thymine (T)-rich, mercury-specific oligonucleotide. Therefore, we expected that this method may offer a promising approach for designing high-performance electrochemical aptasensors for the sensitive and selective detection of a spectrum of targets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700