Quasi-isotropic Surface Plasmon Polariton Generation through Near-Field Coupling to a Penrose Pattern of Silver Nanoparticles
详细信息    查看全文
文摘
Quasicrystals are structures that possess long-range order without being periodic. We investigate the unique characteristics of a photonic quasicrystal that consists of plasmonic Ag nanodisks arranged in a Penrose pattern. The quasicrystal scatters light in a complex but spectacular diffraction pattern that can be directly imaged in the back focal plane of an optical microscope, allowing us to assess the excitation efficiency of the various diffraction modes. Furthermore, surface plasmon polaritons can be launched almost isotropically through near-field grating coupling when the quasicrystal is positioned close to a homogeneous silver surface. We characterize the dispersion relation of the different excited plasmon modes by reflection measurements and simulations. It is demonstrated that the quasicrystal in-coupling efficiency is strongly enhanced compared to a nanoparticle array with the same particle density but only short-range lateral order. We envision that the system can be useful for a number of advanced light harvesting and optoelectronic applications.

Keywords:

quasicrystal; plasmonic nanoantenna; diffraction grating; surface plasmon polariton; Fourier plane; light management

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700