Direct-Liquid-Injection Chemical Vapor Deposition of Nickel Nitride Films and Their Reduction to Nickel Films
详细信息    查看全文
文摘
Smooth and continuous films of nickel nitride (NiNx) with excellent step coverage were deposited from a novel nickel amidinate precursor, Ni(MeC(NtBu)2)2, and either ammonia (NH3) or a mixture of NH3 and hydrogen (H2) gases as co-reactants. The reactants were injected together in direct-liquid-injection chemical vapor deposition (DLI-CVD) processes at substrate temperatures of 160−200 °C. Depending on the ratio of NH3 to H2 gases during deposition, the Ni:N atomic ratio in DLI-CVD NiNx films could be varied from 3:1 to 15:1, having either a cubic nickel structure or a mixture of hexagonal Ni3N and cubic Ni4N crystal structures with an incorporation of nitrogen as low as 6%. The chemical vapor deposition (CVD) growth rates of NiNx could be increased to more than 5 nm/min. The CVD films were smooth and continuous, and they had 100% step coverage in high-aspect-ratio (>50:1) holes. The as-deposited NiNx films had resistivities as low as 50 μΩ cm for film thicknesses of 25 nm. Annealing of the films in H2 at 160 °C or hydrogen plasma treatment at room temperature removed the nitrogen and led to pure nickel films.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700