用户名: 密码: 验证码:
Improved Shock Tube Measurement of the CH4 + Ar = CH3 + H + Ar Rate Constant using UV Cavity-Enhanced Absorption Spectroscopy of CH3
详细信息    查看全文
  • 作者:Shengkai Wang ; David F. Davidson ; Ronald K. Hanson
  • 刊名:Journal of Physical Chemistry A
  • 出版年:2016
  • 出版时间:July 21, 2016
  • 年:2016
  • 卷:120
  • 期:28
  • 页码:5427-5434
  • 全文大小:543K
  • 年卷期:0
  • ISSN:1520-5215
文摘
We report an improved measurement for the rate constant of methane dissociation in argon (CH4 + Ar = CH3 + H + Ar) behind reflected shock waves. The experiment was conducted using a sub-parts per million sensitivity CH3 diagnostic recently developed in our laboratory based on ultraviolet cavity-enhanced absorption spectroscopy. The high sensitivity of this diagnostic allowed for measurements of quantitatively resolved CH3 time histories during the initial stage of CH4 pyrolysis, where the reaction system is clean and free from influences of secondary reactions and temperature change. This high sensitivity also allowed extension of our measurement range to much lower temperatures (<1500 K). The current-reflected shock measurements were performed at temperatures between 1487 and 1866 K and pressures near 1.7 atm, resulting in the following Arrhenius rate constant expression for the title reaction: k(1.7 atm) = 3.7 × 1016 exp(−42 200 K/T) cm3/mol·s, with a 2σ uncertainty factor of 1.25. The current data are in good consensus with various theoretical and review studies, but at the low temperature end they suggest a slightly higher (up to 35%) rate constant compared to these previous results. A re-evaluation of previous and current experimental data in the falloff region was also performed, yielding updated expressions for both the low-pressure limit and the high-pressure limit rate constants and improved agreement with all existing data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700