Structural Requirements for Producing Solvent-Free Room Temperature Liquid Fullerenes
详细信息    查看全文
文摘
A new class of solvent-free room temperature liquid fullerenes was synthesized by attaching a single substituent of 1,3,5-tris(alkyloxy)benzene unit to C60 or C70 under the Prato conditions. Although the C60 monoadducts were single components after chromatographic purification, the C70 monoadducts were isomeric mixtures due to the prolate spheroidal 蟺-chromophore. The alkyl chain length of the substituents significantly affected both melting points and rheological behavior of the fullerene derivatives. When the alkyl chains were short, the intermolecular 蟺鈥撓€ interactions of adjacent fullerene cores led to a melting point higher than room temperature. In contrast, in the case of exceedingly long alkyl chains, such as eicosyl (鈭扖20H41) and docosanyl (鈭扖22H45) groups, the van der Waals interactions among neighboring alkyl chains became dominant. Accordingly, only medium alkyl chain lengths could provide solvent-free fluidic fullerenes with low melting points. The rheological measurements of the liquid fullerenes at 25 掳C revealed their unique liquid characteristics; molecular-level friction (or viscosity) and nanometer-scale clustering were noticed. It is generally thought that alkyl chains serve as a stabilizer of the fullerene core units. Thus, a longer chain or higher plasticity of the stabilizers would promote the disturbance of the core鈥揷ore interactions. It was indeed shown that longer alkyl chains resulted in a lower fluid viscosity. It was also found that metastable solid phases were produced by the noticeable van der Waals interaction between the long alkyl chains especially when a symmetric C60 core was adopted. This interesting finding enabled the comparison of electrochemical activities of the C60 unit between the solvent-free liquid and metastable solid form, which revealed a superior electrochemical activity in the liquid state.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700