Effect of Indium Doping on Surface Optoelectrical Properties of Cu2ZnSnS4 Photoabsorber and Interfacial/Photovoltaic Performance of Cadmium Free In2S3/Cu2ZnSnS4 Heterojunction Thin Film Solar Cell
详细信息    查看全文
文摘
Maximum conversion efficiency of 6.9% was obtained over an electrodeposited Cu2ZnSnS4-based thin film solar cell with a Cd-free In2S3 buffer layer by applying a rapid post-heat treatment to the In2S3/Cu2ZnSnS4 stacked layer. It was found that post-heating of the In2S3/Cu2ZnSnS4 stack promoted an increment of the acceptor density of the Cu2ZnSnS4 layer close to the In2S3–Cu2ZnSnS4 heterointerface of the In2S3/Cu2ZnSnS4 stack. Moreover, the diffusion of In also resulted in a red-shift of the band gap energy of Cu2ZnSnS4 from 1.47 to 1.40 eV. Due to extension of external quantum efficiency response of the solar cell to the long wavelength region, the solar cell based on the post-heated In2S3/Cu2ZnSnS4 stack reached appreciably large short circuit current density of more than 20 mA cm–2. The energy difference between the conduction band minimum of In2S3 and that of Cu2ZnSnS4 at the In2S3/Cu2ZnSnS4 heterointerface was determined to be a slightly positive value of 0.11 eV, indicating formation of a “notch-type” conduction band offset for efficient suppression of the interface recombination.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700