Prediction of Ligand-Induced Structural Polymorphism of Receptor Interaction Sites Using Machine Learning
详细信息    查看全文
文摘
Protein functions are closely related to their three-dimensional structures. Various degrees of conformational changes in the main and side chains occur when binding with other molecules, such as small ligands or proteins. The ligand-induced structural polymorphism of proteins is also referred to as 鈥渋nduced-fit鈥? and it plays an important role in the recognition of a particular class of ligands as well as in signal transduction. We have developed new prediction models that discriminate conformationally fluctuant residues caused by ligand-binding. The training and test data sets were obtained from the Protein Data Bank. The induced-fit residues were judged based on the Z values of the C伪 atom distances in each protein cluster. Moreover, we introduced various descriptors, such as the number of residues, accessible surface area (ASA), depth of the residue, and position-specific scoring matrix (PSSM), which were obtained from the 2D- or 3D-structural information for the protein. After the optimization of the parameters by 5-fold cross validation, the best prediction model was applied to some well-known induced-fit target proteins to verify its effectiveness. Especially in the validation for the DFG motif of a protein kinase family, we succeeded in the prediction of the DFG-out possibility from only the DFG-in conformation of each kinase structure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700