Ultrasensitive Bisphenol A Field-Effect Transistor Sensor Using an Aptamer-Modified Multichannel Carbon Nanofiber Transducer
详细信息    查看全文
文摘
Bisphenol A (BPA) is a known endocrine-disrupting compound (EDC) that has a structure similar to that of the hormone estrogen. Even low concentrations of BPA are able to bind estrogen receptors, thereby inducing severe diseases such as reproductive disorders, chronic diseases, and various types of cancer. Despite such serious effects, the use of BPA remains widespread. Therefore, monitoring of both dietary and nondietary exposure to BPA is important for human healthcare. Herein, we present a field-effect transistor (FET) sensor using aptamer-modified multichannel carbon nanofibers (MCNFs) to detect BPA. The MCNFs are fabricated via single-nozzle electrospinning of two immiscible polymer solutions followed by thermal treatment in an inert atmosphere. The MCNFs are then oxidized using a solution of HNO3 and H2SO4 to introduce carboxyl groups on the surface of the fibers. The carboxyl-functionalized MCNFs (CMCNFs) are immobilized on an amine-functionalized electrode substrate by forming a covalent bond, and amine-functionalized BPA-binding aptamers are modified in the same manner on the CMCNFs. The resulting FET sensors exhibit a high sensitivity, as well as specificity toward BPA at an unprecedentedly low concentration of 1 fM. Furthermore, these sensors are stable and could be reused for repeated assays.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700