Redox-Active 蟺-Conjugated Organometallic Monolayers: Pronounced Coulomb Blockade Characteristic at Room Temperature
详细信息    查看全文
文摘
We report the electrical transport characteristics of a series of molecular wires, fc-C鈮鈥擟6H4鈥擲Ac (fc = ferrocenyl; Ac = acetyl) and AcS-C6H4鈥擟鈮-(fc)n-C鈮鈥擟6H4鈥擲Ac (n = 2, 3), consisting of multiple redox-active ferrocenyl centers. The self-assembled monolayers of these molecular wires on Au surfaces were comprehensively characterized by electrochemistry and conductive atomic force microscopy techniques. Characterization of the wires revealed that electron transport is made extremely efficient by the organometallic redox states. There is a strong electronic coupling between ferrocenyl moieties, and superior electron-transport ability exists through these semirigid molecular wires. Standard rate constants for the electron transfer between the electrode and the ferrocenyl moieties were measured for the monolayers by a potential-step chronoamperometry technique. The electron conduction through the molecular wires was estimated using the monolayers as a bridge from the Au(111) metal surface to the gold tip of a conductive atomic force microscope (CAFM). Using the CAFM, Coulomb blockade behavior arising from the capacitive charging of the multinuclear redox-active molecules was observed at room temperature. The conductance switching was mediated by the presence of various ferrocenyl redox states and each current step corresponded to a specific redox state.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700