Evaporative Thinning: A Facile Synthesis Method for High Quality Ultrathin Layers of 2D Crystals
详细信息    查看全文
文摘
The palette of two-dimensional materials has expanded beyond graphene in recent years to include the chalcogenides among other systems. However, there is a considerable paucity of methods for controlled synthesis of mono- and/or few-layer two-dimensional materials with desirable quality, reproducibility, and generality. Here we show a facile top-down synthesis approach for ultrathin layers of 2D materials down to monolayer. Our method is based on controlled evaporative thinning of initially large sheets, as deposited by vapor mass-transport. Rather than optimizing conditions for monolayer deposition, our approach makes use of selective evaporation of thick sheets to control the eventual thickness, down to a monolayer, a process which appears to be self-stopping. As a result, 2D sheets with high yield, high reproducibility, and excellent quality can be generated with large (>10 渭m) and thin (鈭?鈥? nm) dimensions. Evaporative thinning promises to greatly reduce the difficulty involved in isolating large, mono- and few-layers of 2D materials for subsequent studies.

Keywords:

two-dimensional (2D) materials; 2D synthesis; bismuth selenide; transmission electron microscopy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700