Effect of Reaction Conditions on the Direct Synthesis of Hydrogen Peroxide with a AuPd/TiO2 Catalyst in a Flow Reactor
详细信息    查看全文
文摘
The direct synthesis of hydrogen peroxide (H2O2) represents a potential alternative to the currently industrially used anthraquinone process, and Au鈥揚d catalysts have been identified as effective catalysts. To obtain a direct process, a detailed understanding of the reaction conditions in a continuous flow system is needed. In this study, we use a flow reactor to study reaction conditions independently, including total gas flow rate, catalyst mass, reaction pressure, solvent flow rate, and H2/O2 molar ratio. The study was carried out without the addition of any halide or acid additives often used to suppress the sequential hydrogenation and decomposition reactions that allowed the kinetics of these reactions to be studied along with the synthesis reaction. A global kinetic model describing the net and gross synthesis rate is proposed, and on the basis of this model, we propose that the decomposition reaction suppresses the production of H2O2 to a greater extent than hydrogenation and that catalyst design studies should aim at blocking or generating catalysts without O鈥揙 dissociation sites.

Keywords:

hydrogen peroxide; flow reactor; kinetics; gold; palladium catalyst

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700