Mechanism of Oxygen Reduction Reaction on Pt(111) in Alkaline Solution: Importance of Chemisorbed Water on Surface
详细信息    查看全文
  • 作者:Shizhong Liu ; Michael G. White ; Ping Liu
  • 刊名:Journal of Physical Chemistry C
  • 出版年:2016
  • 出版时间:July 21, 2016
  • 年:2016
  • 卷:120
  • 期:28
  • 页码:15288-15298
  • 全文大小:627K
  • 年卷期:0
  • ISSN:1932-7455
文摘
We report a detailed mechanistic study of the oxygen reduction reaction (ORR) on Pt(111) in alkaline solution, combining density functional theory and kinetic Monte Carlo simulations. A complex reaction network including four possible pathways via either 2e or 4e transfer is established and is able to reproduce the experimental measured polarization curve at both low- and high-potential regions. Our results show that it is essential to account for solvation by water and the dynamic coverage of *OH to describe the reaction kinetics well. In addition, a chemisorbed water (*H2O)-mediated mechanism including 4e transfers is identified, where the reduction steps via *H2O on the surface are potential-independent and only the final removal of *OH from the surface in the form of OH(aq) contributes to the current. For the ORR in alkaline solutions, such a mechanism is more competitive than the associative and dissociative mechanisms typically used to describe the ORR in acid solution. Finally, *OH and **O2 intermediates are found to be critically important for tuning the ORR activity of Pt in alkaline solution. To enhance the activity, the binding of Pt should be tuned in such a way that *OH binding is weak enough to release more surface sites under working conditions, while **O2 binding is strong enough to enable the ORR via the 4e transfer mechanism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700