Magnetic-Field-Induced Normal Force of Magnetorheological Elastomer under Compression Status
详细信息    查看全文
文摘
The magnetic-field-induced normal force of magnetorheological elastomer (MRE) under compression status is studied in this paper. The influence of monotonic loading of the magnetic field, particle distribution, temperature, and cyclic loading of the magnetic field are investigated. The experimental results show that the normal force increases with increasing magnetic field and precompression force. For aligned MRE, the change of the magnetic-field-induced normal force is larger than that of isotropic MRE due to the special chainlike structure. When the temperature increases, the maximum change of the magnetic-field-induced normal force first increases and then decreases, due to the interaction of iron particles and the decreasing of the saturation magnetization of the carbonyl iron particles. If the magnetic field is circularly applied on the MRE, the normal force during unloading is smaller than that during loading due to the stress relaxation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700