用户名: 密码: 验证码:
Dislocation-Actuated Growth and Inhibition of Hexagonal l-Cystine Crystallization at the Molecular Level
详细信息    查看全文
文摘
Crystallization of l-cystine is a critical process in the pathogenesis of kidney stone formation in cystinuria, a disorder affecting more than 20鈥?00 individuals in the United States alone. In an effort to elucidate the crystallization of l-cystine and the mode of action of tailored growth inhibitors that may constitute effective therapies, real-time in situ atomic force microscopy has been used to investigate the surface micromorphology and growth kinetics of the {0001} faces of l-cystine at various supersaturations and concentrations of the growth inhibitor l-cystine dimethylester (CDME). Crystal growth is actuated by screw dislocations on the {0001} l-cystine surface, producing hexagonal spiral hillocks that are a consequence of six interlacing spirals of anisotropic molecular layers. The high level of elastic stress in the immediate vicinity around the dislocation line results in a decrease in the step velocities and a corresponding increase in the spacing of steps. The kinetic curves acquired in the presence of CDME conform to the classical Cabrera鈥揤ermilyea model. Anomalous birefringence in the {101虆0} growth sectors, combined with computational modeling, supports a high fidelity of stereospecific binding of CDME, in a unique orientation, exclusively at one of the six crystallographically unique projections on the {101虆0} plane.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700