Large Carbon Isotope Fractionation during Biodegradation of Chloroform by Dehalobacter Cultures
详细信息    查看全文
文摘
Compound specific isotope analysis (CSIA) has been applied to monitor bioremediation of groundwater contaminants and provide insight into mechanisms of transformation of chlorinated ethanes. To date there is little information on its applicability for chlorinated methanes. Moreover, published enrichment factors (蔚) observed during the biotic and abiotic degradation of chlorinated alkanes, such as carbon tetrachloride (CT); 1,1,1-trichloroethane (1,1,1-TCA); and 1,1-dichloroethane (1,1-DCA), range from 鈭?6.5鈥?to 鈭?.8鈥?and illustrate a system where similar C鈥揅l bonds are cleaved but significantly different isotope enrichment factors are observed. In the current study, biotic degradation of chloroform (CF) to dichloromethane (DCM) was carried out by the Dehalobacter containing culture DHB-CF/MEL also shown to degrade 1,1,1-TCA and 1,1-DCA. The carbon isotope enrichment factor (蔚) measured during biodegradation of CF was 鈭?7.5鈥?卤 0.9鈥? consistent with the theoretical maximum kinetic isotope effect for C鈥揅l bond cleavage. Unlike 1,1,1-TCA and 1,1-DCA, reductive dechlorination of CF by the Dehalobacter-containing culture shows no evidence of suppression of the intrinsic maximum kinetic isotope effect. Such a large fractionation effect, comparable to those published for cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) suggests CSIA has significant potential to identify and monitor biodegradation of CF, as well as important implications for recent efforts to fingerprint natural versus anthropogenic sources of CF in soils and groundwater.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700