Exploring Adsorption and Reactivity of NH3 on Reduced Graphene Oxide
详细信息    查看全文
文摘
Sensors based on graphene and functionalized graphene are emerging as the state of the art for detecting extremely small quantities of target molecules under realistic working conditions with high selectivity. Although some theoretical work has emerged to understand such adsorption processes (Tang and Cao J. Phys. Chem. C 2012, 116, 8778; Leenaerts et al. Phys. Rev. B 2008, 77, 125416; Tang and Cao J. Chem. Phys. 2011, 134, 044710), little experimental evidence detailing the dynamics of the adsorption and resulting surface species has been reported. Here, we study the adsorption of NH3 on reduced graphene oxide (RGO) using in situ infrared (IR) microspectroscopy performed under realistic working conditions (i.e., ambient pressure), along with density functional theory (DFT) calculations to support experimental observations. Conclusions drawn from experiment and theory reveal the presence of various surface species that impact the conductivity of the substrate at varying rates. The species arising from adsorption and interactions between NH3 and RGO include molecularly physisorbed NH3, as well as chemisorbed fragments such as NH2, OH, and CH due to dissociation of NH3 at defects and epoxide groups.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700