Nanostructured Composites Obtained by ATRP Sleeving of Bacterial Cellulose Nanofibers with Acrylate Polymers
详细信息    查看全文
文摘
Novel nanostructured composite materials based on bacterial cellulose membranes (BC) and acrylate polymers were prepared by in situ atom transfer radical polymerization (ATRP). BC membranes were functionalized with initiating sites, by reaction with 2-bromoisobutyryl bromide (BiBBr), followed by atom transfer radical polymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA), catalyzed by copper(I) bromide and N,N,N鈥?N鈥?N鈥?pentamethyldiethylenetriamine (PMDETA), using two distinct initiator amounts and monomer feeds. The living characteristic of the system was proven by the growth of PBA block from the BC-g-PMMA membrane. The BC nanofiber sleeving was clearly demonstrated by SEM imaging, and its extent can be tuned by controlling the amount of initiating sites and the monomer feed. The ensuing nanocomposites showed high hydrophobicity (contact angles with water up to 134掳), good thermal stability (initial degradation temperature in the range 241鈥?75 掳C), and were more flexible that the unmodified BC membranes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700