Bifunctional Dendronized Cellulose Surfaces as Biosensors
详细信息    查看全文
文摘
Well-defined dendronized cellulose substrates displaying multiple representations of dual-functionality were constructed by taking advantage of the efficiency of the click reaction combined with traditional anhydride chemistry. First, activated cellulose surfaces were decorated with several generations of dendrons, and their peripheral reactive groups were subsequently reacted with a trifunctional orthogonal monomer. The generated substrate tool box was successfully explored by accurately tuning the surface function using a versatile orthogonal dual postfunctionalization approach. In general, the reactions were monitored by using a click-dye reagent or a quartz crystal microbalance (QCM) technique, and the resulting surfaces were well-characterized using XPS, FT-IR, and contact angle measurements. Utilizing this approach two different surfaces have been obtained; that is, triethylenglycol oligomers and amoxicillin molecules were efficiently introduced to the dendritic surface. As a second example, mannose-decorated hydroxyl functional surfaces illustrated their potential as biosensors by multivalent detection of lectin protein at concentration as low as 5 nM.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700