Accelerated Enzymatic Galactosylation of N-Acetylglucosaminolipids in Lipid Microdomains
详细信息    查看全文
文摘
A fluoro-tagged N-acetylglucosamine-capped glycolipid that can form lipid microdomains in fluid phospholipid bilayers has been shown to be enzymatically galactosylated by bovine 尾(1,4)-galactosyltransferase. MALDI MS, HPLC, and LC鈥揗S revealed that the rate of enzymatic transformation was significantly enhanced by lipid clustering; at a 1% mol/mol loading, clustered glycolipids were galactosylated 9-fold faster than glycolipids dispersed across the bilayer surface. The transformation of the GlcNAc 鈥済lycocalyx鈥?into a Gal(尾1鈥?)GlcNAc 鈥済lycocalyx鈥?relabeled these vesicles, making them susceptible to agglutination by Erythrina cristagalli lectin (ECL). The kinetic parameters for this transformation revealed a lower apparent Km when the substrate lipids were clustered, which is attributed to multivalent binding to an extended substrate cleft around the active site. These observations may have important implications where soluble enzymes act on substrates embedded within cellular lipid rafts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700