Single-Molecule FRET Studies of RNA Folding: A Diels鈥揂lderase Ribozyme with Photolabile Nucleotide Modifications
详细信息    查看全文
文摘
Enzymology at the single-molecule level by using fluorescence resonance energy transfer (smFRET) offers unprecedented insight into mechanistic aspects of catalytic reactions. Implementing spatiotemporal control of the reaction by using an external trigger is highly valuable in these challenging experiments. Here, we have incorporated a light-cleavable caging moiety into specific nucleotides of the Diels鈥揂lderase (DAse) ribozyme. In this way, the folding energy landscape was significantly perturbed, and the catalytic activity was essentially suppressed. A careful smFRET efficiency histogram analysis at various Mg2+ ion concentrations revealed an additional intermediate state that is not observed for the unmodified DAse ribozyme. We also observed that only a fraction of DAse molecules returns to the native state upon cleavage of the caged group by UV light. These constructs are attractive model RNA systems for further real-time single-molecule observation of the coupling between conformational changes and catalytic activity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700