Stimulus-Responsive Light Coupling and Modulation with Nanofiber Waveguide Junctions
详细信息    查看全文
文摘
We report a systematic study of light coupling at junctions of overlapping SnO2 nanofiber waveguides (WGs) as a function of gap separation and guided wavelength. The junctions were assembled on silica substrates using micromanipulation techniques and the gap separation was controlled by depositing thin self-assembled polyelectrolyte coatings at the fiber junctions. We demonstrate that the coupling efficiency is strongly dependent on the gap separation, showing strong fluctuations (0.1 dB/nm) in the power transfer when the separation between nanofibers changes by as little as 2 nm. Experimental results correlate well with numerical simulations using three-dimensional finite-difference time-domain techniques. To demonstrate the feasibility of using coupled nanofiber WGs to modulate light, we encased the junctions in an environment-responsive matrix and exposed the junctions to gaseous vapor. The nanofiber junctions show an 95% (or 80%) modulation of the guided 450 nm (or 510 nm) light upon interaction with the gaseous molecules. The results reveal a unique nanofiber-based sensing scheme that does not require a change in the refractive index to detect stimuli, suggesting these structures could play important roles in localized sensing devices including force-based measurements or novel chemically induced light modulators.

Keywords:

Semiconductor nanowire; subwavelength waveguide; light modulation; evanescent field; sensor; nanophotonics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700