Nanoparticle-Facilitated Membrane Depolarization-Induced Receptor Activation: Implications on Cellular Uptake and Drug Delivery
详细信息    查看全文
文摘
Cell-specific uptake of drug delivery systems (DDSs) are crucial to achieve optimal efficacy of many drugs. Widely employed strategies to facilitate targeted intracellular drug delivery involves attachment of targeting ligands (peptides or antibodies) to DDSs. Target receptors mutations can limit the effectiveness of this approach. Herein, we demonstrate, through in vitro inhibitory and drug delivery studies, that graphene nanoribbons (GNRs), water dispersed with the amphiphilic polymer called PEG-DSPE ((1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N [amino (polyethylene glycol)]) (induce membrane depolarization-mediated epidermal growth factor receptor (EGFR) activation. This phenomenon is ligand-independent and EGFR activation occurs via influx of Ca2+ ions from the extracellular space. We further provide evidence, through in vivo studies, that this mechanism could be exploited to facilitate efficacious drug delivery into tumors that overexpress EGFR. The results suggest that transient membrane depolarization-facilitated cell receptor activation can be employed as an alternate strategy for enhanced intracellular drug delivery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700