Accelerating the Design of Functional Glasses through Modeling
详细信息    查看全文
文摘
Functional glasses play a critical role in current and developing technologies. These materials have traditionally been designed empirically through trial-and-error experimentation. However, here we report recent advancements in the design of new glass compositions starting at the atomic level, which have become possible through an unprecedented level of understanding of glass physics and chemistry. For example, new damage-resistant glasses have been developed using models that predict both manufacturing-related attributes (e.g., viscosity, liquidus temperature, and refractory compatibility), as well as the relevant end-use properties of the glass (e.g., elastic moduli, compressive stress, and damage resistance). We demonstrate how this approach can be used to accelerate the design of new industrial glasses for use in various applications. Through a combination of models at different scales, from atomistic through empirical modeling, it is now possible to decode the “glassy genome” and efficiently design optimized glass compositions for production at an industrial scale.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700