Inverse Design and Synthesis of acac-Coumarin Anchors for Robust TiO2 Sensitization
详细信息    查看全文
文摘
An inverse design methodology suitable to assist the synthesis and optimization of molecular sensitizers for dye-sensitized solar cells is introduced. The method searches for molecular adsorbates with suitable photoabsorption properties through continuous optimization of 鈥渁lchemical鈥?structures in the vicinity of a reference molecular framework. The approach is illustrated as applied to the design and optimization of linker chromophores for TiO2 sensitization, using the recently developed phenyl-acetylacetonate (i.e., phenyl-acac) anchor [McNamara et al. J. Am. Chem. Soc.2008, 130, 14329鈥?4338] as a reference framework. A novel anchor (3-acac-pyran-2-one) is found to be a local optimum, with improved sensitization properties when compared to phenyl-acac. Its molecular structure is related to known coumarin dyes that could be used as lead chromophore anchors for practical applications in dye-sensitized solar cells. Synthesis and spectroscopic characterization confirms that the linker provides robust attachment to TiO2, even in aqueous conditions, yielding improved sensitization to solar light and ultrafast interfacial electron injection. The findings are particularly relevant to the design of sensitizers for dye-sensitized solar cells because of the wide variety of structures that are possible but they should be equally useful for other applications such as ligand design for homogeneous catalysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700