Effect of Mechanical Stress on Spiropyran-Merocyanine Reaction Kinetics in a Thermoplastic Polymer
详细信息    查看全文
文摘
Mechanical force alters the potential energy surface of a mechanophore reaction by modifying the activation energy for conversion. The effects of force on the rate constants and activation energies are not well characterized for mechanophores in bulk polymers. In this work, spiropyran-linked polyurethanes are synthesized and the kinetics of the spiropyran-merocyanine transition in the bulk polymer measured under different values of a macroscopic tensile stress. Above a critical threshold stress, the forward rate constant (spiropyran to merocyanine transition) increases, while the reverse rate constant (merocyanine to spiropyran transition) decreases with applied stress. A tensile stress of 50 MPa enhances the forward rate constant by 110% and lowers the forward activation energy by 1.8 kJ/mol compared to the unstressed condition. Also, this same amount of stress reduces the reverse rate constant by 65% and increases the reverse activation energy by 2.5 kJ/mol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700