Electrochemical Polymerization of Iron(III) Polypyridyl Complexes through C–C Coupling of Redox Non-innocent Phenolato Ligands
详细信息    查看全文
文摘
Phenolato moieties impart redox flexibility to metal complexes due their accessible (oxidative) redox chemistry and have been proposed as functional ligand moieties in redox non-innocent ligand based transition metal catalysis. Here, the electro- and spectroelectrochemistry of phenolato based μ-oxo-diiron(III) complexes [(L1)Fe(μ-O)Fe(L1)]2+ (1) and [(L2)Fe(μ-O)Fe(L2)]2+ (2), where L1 = 2-(((di(pyridin-2-yl)methyl)(pyridin-2-ylmethyl)amino)methyl)phenol and L2 = 3,5-di-tert-butyl-2-(((di(pyridin-2-yl)methyl)(pyridin-2-ylmethyl)amino)methyl)phenol, is described. The electrochemical oxidation of 1 in dichloromethane results in aryl C–C coupling of phenoxyl radical ligand moieties to form tetra nuclear complexes, which undergo subsequent oxidation to form iron(III) phenolato based polymers (poly-1). The coupling is blocked by placing tert-butyl groups at para and ortho positions of phenol units (i.e., 2). Poly-1 shows two fully reversible redox processes in monomer free solution. Assignment of species observed during the electrochemical and chemical {(NH4)2[CeIV(NO3)6]} oxidation of 1 in acetonitrile is made by comparison with the UV–vis–NIR absorption and resonance micro-Raman spectroelectrochemistry of poly-1, and by DFT calculations, which confirms that oxidative coupling occurs in acetonitrile also. However, in contrast to that observed in dichloromethane, in acetonitrile, the oligomers formed are degraded in terms of a loss of the Fe(III)-O-Fe(III) bridge by protonation. The oxidative redox behavior of 1 and 2 is, therefore, dominated by the formation and reactivity of Fe(III) bound phenoxyl radicals, which considerably holds implications in regard to the design of phenolato based complexes for oxidation catalysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700