Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene鈥揇iimide Heterojunctions toward High Performance
详细信息    查看全文
文摘
Perovskite hybrid solar cells (pero-HSCs) were demonstrated to be among the most promising candidates within the emerging photovoltaic materials with respect to their power conversion efficiency (PCE) and inexpensive fabrication. Further PCE enhancement mainly relies on minimizing the interface losses via interface engineering and the quality of the perovskite film. Here, we demonstrate that the PCEs of pero-HSCs are significantly increased to 14.0% by incorporation of a solution-processed perylene鈥揹iimide (PDINO) as cathode interface layer between the [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) layer and the top Ag electrode. Notably, for PDINO-based devices, prominent PCEs over 13% are achieved within a wide range of the PDINO thicknesses (5鈥?4 nm). Without the PDINO layer, the best PCE of the reference PCBM/Ag device was only 10.0%. The PCBM/PDINO/Ag devices also outperformed the PCBM/ZnO/Ag devices (11.3%) with the well-established zinc oxide (ZnO) cathode interface layer. This enhanced performance is due to the formation of a highly qualitative contact between PDINO and the top Ag electrode, leading to reduced series resistance (Rs) and enhanced shunt resistance (Rsh) values. This study opens the door for the integration of a new class of easily-accessible, solution-processed high-performance interfacial materials for pero-HSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700